An improved bootstrap test of density ratio ordering

نویسندگان

  • Brendan K. Beare
  • Xiaoxia Shi
چکیده

Two probability distributions with common support are said to exhibit density ratio ordering when they admit a nonincreasing density ratio. Existing statistical tests of the null hypothesis of density ratio ordering are known to be conservative, with null limiting rejection rates below the nominal significance level whenever the two distributions are unequal. We show how a bootstrap procedure can be used to shrink the critical values used in existing procedures such that the limiting rejection rate is increased to the nominal significance level on the boundary of the null. This improves power against nearby alternatives. Our procedure is based on preliminary estimation of a contact set, the form of which is obtained from a novel representation of the Hadamard directional derivative of the least concave majorant operator. Numerical simulations indicate that improvements to power can be very large in moderately sized samples. We thank Zhonglin Li and Juwon Seo for research assistance, and Andres Santos and seminar participants at the University of Texas at Austin, Hong Kong University of Science and Technology, University of Tokyo, University of Sydney, Pennsylvania State University, University College London, University of Copenhagen, Aarhus University, and Hitotsubashi University for helpful comments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Likelihood Ratio Test Against Stochastic Ordering in Several Populations

The likelihood ratio test is often used to test hypotheses involving a stochastic ordering. Distribution theory for the likelihood ratio test has been developed only for two stochastically ordered distributions. For testing equality of distributions against a stochastic ordering in several populations, this paper derives the null asymptotic distribution of the likelihood ratio test statistic, w...

متن کامل

Dragging: Density-Ratio Bagging

We propose density-ratio bagging (dragging), a semi-supervised extension of bootstrap aggregation (bagging) method. Additional unlabeled training data are used to calculate the weight on each labeled training point by a density-ratio estimator. The weight is then used to construct a weighted labeled empirical distribution, from which bags of bootstrap samples are drawn. Asymptotically, dragging...

متن کامل

Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm

This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...

متن کامل

Generalised likelihood ratio tests for spectral density

There are few techniques available for testing whether or not a family of parametric times series models fits a set of data reasonably well without serious restrictions on the forms of alternative models. In this paper, we consider generalised likelihood ratio tests of whether or not the spectral density function of a stationary time series admits certain parametric forms. We propose a bias cor...

متن کامل

Improved likelihood inference in Birnbaum-Saunders regressions

The Birnbaum–Saunders regression model is commonly used in reliability studies. We address the issue of performing inference in this class of models when the number of observations is small. Our simulation results suggest that the likelihood ratio test tends to be liberal when the sample size is small. We obtain a correction factor which reduces the size distortion of the test. Also, we conside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015